Fructose metabolism and metabolic disease.

The Journal of clinical investigation. 2018;128(2):545-555

Plain language summary

Sugar consumption is thought to be a contributing factor in the increase in diabetes and obesity and the associated risk of cardiovascular disease worldwide. Sucrose (table sugar) and high fructose corn syrup contain almost equal amounts of fructose and glucose and are commonly added to processed foods. Whilst long-term studies are lacking, some short-term intervention studies show that fructose can impair lipid metabolism and insulin sensitivity in humans. This article reviews the biochemistry and molecular genetics of fructose metabolism as well as potential mechanisms by which excessive fructose consumption contributes to cardiometabolic disease. Fructose absorption in the human intestine is saturable, and there is a large range in capacity to absorb fructose between individuals, and unabsorbed fructose may contribute to gastrointestinal symptoms including pain and bloating. Fructose concentrations in the blood can increase 10-fold after consumption, but are rapidly cleared, mostly by the liver, where it provides substrate for metabolic processes, but may also be involved in signalling functions. Fructose may enhance glucose uptake by the liver and storage as glycogen and lipids. It may also increase production of uric acid which is implicated with gout. Excessive fructose consumption affects lipid metabolism and may contribute to fat accumulation in the liver and increase circulating triglycerides, a risk factor for heart disease. In animal models it also induces increased insulin levels. Fructose is one of the sweetest sugars which may affect appetite and overeating. It may also induce addiction-like behaviours such as binging and dependence in part by stimulating dopaminergic pathways. It also appears to induce leptin resistance which further increases food intake and obesity.

Abstract

Increased sugar consumption is increasingly considered to be a contributor to the worldwide epidemics of obesity and diabetes and their associated cardiometabolic risks. As a result of its unique metabolic properties, the fructose component of sugar may be particularly harmful. Diets high in fructose can rapidly produce all of the key features of the metabolic syndrome. Here we review the biology of fructose metabolism as well as potential mechanisms by which excessive fructose consumption may contribute to cardiometabolic disease.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Digestive, absorptive and microbiological
Patient Centred Factors : Triggers/Metabolic syndrome/fructose
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Not applicable
Bioactive Substances : Sucrose ; Fructose ; Glucose

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Sucrose ; Lipid metabolism ; Glucose metabolism ; Cardiovascular risk